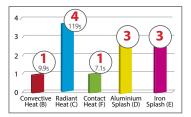
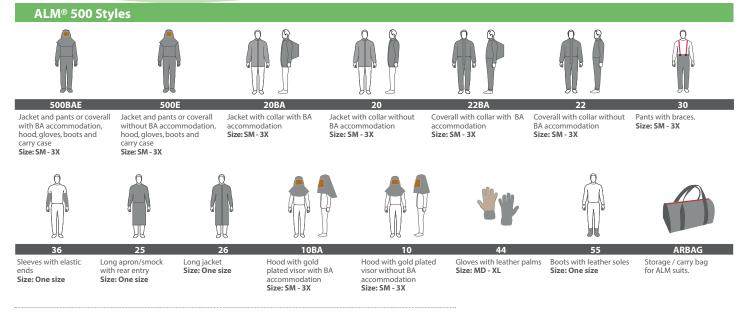
ALM® 500

Aluminised suit with moisture barrier for use in approach areas with moisture or steam

- Outer surface of superior Gentex 'Dual Mirror®', 100% aluminimum.
- Reflects up to 95% of radiant heat energy so less heat penetrates through to the wearer, extending effective work periods
- Inner neoprene moisture barrier for moisture and steam protection
- Hood includes gold reflective heat shield
- · Class 4 (highest class) protection against radiant heat
- Available as full suit with jacket & pants or full coverall with hood, boots, glove and carry bag
- Also available as individual items when required*
- · Jacket and coverall include rear pouch for BA set
- Range of accessory styles available such as sleeves, aprons and smocks


* For full EN 11612 protection the full suit including hood, gloves and boots should be worn as an ensemble

Fabric



Outer layer of Gentex Dual Mirror® aluminised fibreglass with inner neoprene moisture barrier

See overleaf for heat test and classification explanations

Warning: ALM[®] garments will only provide full body protection to EN 11612 and the radiant heat levels tested when worn with all the items to provide full body protection.

Understanding EN 11612 And Radiant Heat Protection

EN 11612 Protection against heat and flames	What is the purpose of the standard?What are the different heat tests it contains and how are they tested?How is this useful in assessment of aluminium suits?
FN 11612	The EN 11612 introduction states it contains MINIMUM PERFORMANCE LEVEL

Test Code Standard Letter

What is the purpose of the standard?

garments for protection against heat and flames and is not intended as a 'benchmark' - many applications will require higher levels of protection than the minimum.

Fabric Heat Resistance Tests

Heat Type

What are the different heat tests it contains and how are they tested?

Fab	ric Flammability Tests
Test method	EN 15025 : Procedure A (Code letter A1)
Status	Required: applies to fabric and seams
Description	Flame applied to centre of vertical fabric sample for 10 seconds
Requirements	- No flame shall reach the sample edge - No flaming or molten debris - No hole formation > 5mm - Afterglow should be $\leq 2s$ - Afterflame should be $\leq 2s$

Test method	EN 15025 : Procedure B (Code Letter A2)	
Status	Optional - applies to fabric and seams	
Description	Flame applied to bottom edge of vertical fabric sample	
Requirements	 No flame shall reach top or vertical edges No Flaming or molten debris Afterglow should be ≤ 2s Afterflame should be ≤ 2s 	

ISO 9151	В	Convective Heat	 Small flame applied to lower surface of horizontal fabric sample Heat calorimeter records the time until a rise of 24°C on the other side of the fabric 	B1: 4.0s to <10s B2: 10.0s to <20.0s B3: 20.0 or more			
Lowest class is	ass is B1, highest class is B3: the longer time taken for temperature rise the longer a garment w						
ISO 6942	С	Radiant Heat	 Fabric sample exposed to radiant heat source of 20-40Kw Heat calorimeter records the time until a rise of 24°C on the other side of the fabric 	C1: 7.0s to <20.0s C2: 20.0s to <50.0s C3: 50.0s to <95.0s C4: 95.0s or more			
Lowest class is	s C1, highest	t class is C4: the long	er time taken for temperature rise the longer a garme	nt will protect			
ISO 12127-1	F	Contact Heat	 Fabric sample placed over heated cylinder at 250°c Calorimeter behind fabric measure time to a rise in temperature of 10°c 	F1: 5s <10s F2: 10s <15s F3: 15s			
F1 is the lowe	st. F3 is the l	nighest. the longer t	ime taken for temperature rise the longer a garment v	vill protect			
Molten Me	etal Splas	h Tests					
Objective is to indicate the mass of molten metal required to damage a layer of PVC (simulating human skin) held behind the test fabric. The greater the mass required, the better the protection.							
ISO 9185	D	Molten Aluminium Splash	- Molten aluminium at 780°c dripped onto fabric sample at 60°c angle	D1: 100g <200g D2: 200g <350g D3: 350g			
ISO 9185	E	Molten Iron	- Molten iron at 1400°c dripped onto	E1: 60g <120g			

Note: any ONE of the heat protection performance tests with a Class 1 result is required

Description

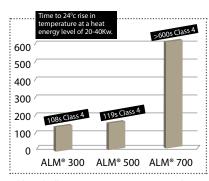
How is this useful in assessment of aluminised suits?

E2: 120g <200g Splash fabric sample at 75°c angle E3: 200a D1/E1 are the lowest. D3/E3 are the highest. The fabric will protect against a greater mass of the molten metal

Aluminised suits are primarily designed to protect against RADIANT HEAT.

This is assessed as the temperature rise likely to cause pain from a 2nd degree burn at this heat energy level.

The ISO 6942 radiant heat test measures the time until a temperature rise of 24°C occurs behind the fabric given a heat source of 20 to 40Kw of radiant heat energy.


	Class C1	Class C2	Class C3	Class C4			
	7.0s to 20.0s	20.0s to 50.0s	50.0s to 95.0s	95.0s or more			

Comparing the performance results of different products will indicate the relative effectiveness of protection.

• By calculating the likely heat energy level in Kw given the distance from the heat source, an approximate indication of how long wearer will be protected for can be determined.

• Where available, considering the actual result of the test as well the product classification can give more detail. Actual Results for Lakeland ALM[®] garments are indicated by the graph.

Note: Such an analysis can only provide approximate indications as other factors may effect the results - such as ambient temperature and the physiology of the wearer. It is always the users responsibility to determine suitability of a garment for an application

Although all 3 ALM® garments are measured as Class 4. ALM® 700 provides a much higher level of protection - and therefore facilitates greater working times and more protection, than 300/500.

Lakeland Industries Europe Limited A division of Lakeland Industries Inc, USA.

Classes