

The Guide

to Secondary FR Workwear Selection

A guide to the types and selection of Secondary FR Workwear

Why choose Lakeland?

Secondary FR Workwear Selection Guide

This booklet provides information on Lakeland's Pyrolon™ range of Secondary FR Workwear, along with a detailed guide on testing, relative performance and selection of various options in the market to enable users to make the most effective choice.

Secondary FR Workwear is used where chemical protection is required concurrently with primary FR protection (offered by EN 11612 certified workwear). Standard chemical suits cannot be used in these circumstances as they will compromise thermal protection - therefore specialist Secondary FR workwear is required that provides both chemical protection and supports flame and heat protection.

Especially in the Oil, Gas and Petrochemical industry, secondary FR workwear is vital.

This guide provides users in this and other industries with an effective tool to ensure they are using the best coverall for the job - resulting in better targeted protection, optimal comfort and ensuring your thermal protection is not being compromised by incorrect choice of workwear combinations.

Lakeland delivers the best, most innovative Protective Clothing products and choices in the world.

Broad range of products and fabrics

The wide choice of fabrics and styles offered means users can target selected protection more specifically to their application - which means better protection, greater comfort and lower cost. Lakeland offers the right tool for the job... because if all you have is a hammer... everything looks like a nail!

Expertise from experience

Lakeland was the original manufacturer of non-woven based limited life clothing and remains the best. Our expertise is derived from over forty years experience of the design and manufacture of protective clothing.

World-wide presence and growth

Lakeland International is growing rapidly, with production and sales in over 40 countries. So we can bring you the best in fabrics and innovations the world has to offer.

Know the maker - we manufacture our own products

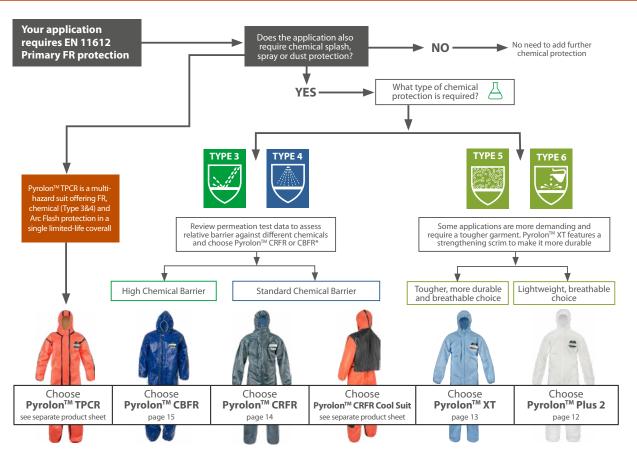
Lakeland Protects People. It is our core business. Unlike many of our competitors we don't use contractors for our key products. We make our own - so we control production and quality.

We design the fabric, we make the garment, we inspect it and we ship it.

Let us help you Protect Your People.

Introduction: The only Secondary FR Workwear you can trust

The challenge of multi-risk environments: why PyrolonTM should be the default choice for chemical protective clothing in sectors where protecting against heat, flames and chemicals is the norm.


What is Secondary FR Workwear?

In many industrial environments the need for PPE to protect against flame and heat is common. Protection against chemicals is also often required at the same time. Secondary FR Workwear is designed to be worn *over* primary FR workwear (certified to EN 11612) to provide that chemical protection *without compromising thermal protection* - and ideally improving it.

There are **four** reasons why Pyrolon™ are *the only Secondary FR garments you can trust*: 1 Standard polymer-based chemical suits cannot be used over primary FR workwear; being plastic, the fabric will ignite and burn, compromising the thermal protection offered by the EN 11612 garment worn beneath (see page 7) 2 Pyrolon™ garments are the only Type 3 to 6 suits that are proved to not only safegard the thermal protection offered by your EN 11612 FR suit, but to improve it! (see pages 7 & 8) 3 Secondary FR Workwear is certified to EN 14116. This uses a simple vertical flammability test that does not prove effectiveness either of any FR protection nor of reducing body burn when worn over Primary FR Workwear. (page 9) 4 Commonly available FR-treated SMS Secondary FR Workwear garments are cheap, but in FR performance show little difference from standard SMS garments and in tests show almost no reduction of predicted body burn. Further, these garments fail to fully meet the requirements of the latest EN 14116:2015 FR standard, proving their inadequacy. (page 9)

All this has been proven conclusively through the use of thermal mannequin testing; using simulated flash fire to predict the body burn resulting from different combinations of EN 11612 workwear and secondary FR workwear.

Pyrolon[™] Selection Chart

Note: that permeation test data is not an indication of safe-wear time and should not be used as such.

 $See \ \underline{https://www.lakeland.com/europe/industries/how-to-select-the-right-chemical-safety-clothing} \ (section \ 4) \ for \ more \ information.$

1.0

Secondary FR Workwear What is the purpose of Secondary FR workwear

Where and when should Secondary Fr Workwear be used?

The Hazards.....

Protective Clothing — Required

When & where should Secondary FR be used?

- Secondary FR Workwear is worn when protection against both flames and chemicals are required.
- Secondary FR garments are designed to be worn over Primary FR Workwear.
- Secondary FR Garments provide chemical protection and feature FR Properties: the fabric and components will not ignite and burn.
- However... Secondary FR Workwear will NOT provide flame and heat protection when worn alone; thermal protection must be provided by Primary FR Workwear.

Secondary FR Workwear is worn *over* Primary FR Workwear when flame *and* chemical protection is required *at the same time*.

1 1 Testing of Primary & Secondary FR workwear

What tests are used to assess primary and secondary FR workwear? Which tests provide an indication of the effectiveness of heat and flame protection?

There are **2** key CE standards for flame and heat protective workwear

.

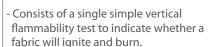
pecific application types. For example:-

similar applications

EN 61482: Clothing for protection

EN 11611: Clothing for welding and

against the heat hazards of arc flash



EN 469: Clothing for fire-fighters

Secondary FR Workwear chemical suits may be worn over all such primary FR protection.

EN 14116

Used to certify SECONDARY FR Workwear

Provides no indication of any level of protection

EN 11612

Used to certify PRIMARY FR Workwear

- Consists of a series of tests including heat shrinkage resistance, vertical flammability, and five optional heat resistance tests.
- The above are tests ONLY on the fabric
- Includes optional whole garment thermal mannequin test to EN 13506.

How are these standards and test different? What do these tests indicate?

Testing of Primary and Secondary FR Workwear

Testing of Primary & Secondary FR workwear

How are the tests used for EN 14116 and 11612 different?

What do these tests tell you?

Tests in EN 14116

Used to certify SECONDARY FR Workwear

ISO 15025 : Limited Flame Spread (Vertical Flammability) Test to Procedure A

- Fabric sample (200mm x 160mm) clamped vertically
- Flame applied to Centre (Procedure A) for 10 seconds

- IIIIee C	THEE Classes Of Tridexes										
Index 1	- No burning shall reach any outer edge of the sample - No molten or flaming debris - Afterflame less than or equal to 2 seconds										
Index 2	- Same as Index 1 - No hole formation greater than 5mm										
Index 3	- Same as Index 1 - No hole formation greater than 5mm										

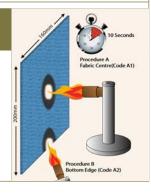
Tests in EN 11612

Used to certify PRIMARY FR Workwear

Heat Resistance at 180°C (Optional at 260°C)

A fabric sample is placed in an oven at 180°C (or 260°C) for 5 minutes. The sample should not ignite or melt and should not shrink by more than 5%.

Limited Flame Spread (Vertical Flammability) Test to EITHER


- Fabric sample (200mm x 160mm) clamped vertically
- Flame applied to either centre (Procedure A) or bottom edge (Procedure B) for 10 seconds

Reauirements:

- No flame should reach the edge of the fabric sample
- No flaming or molten debris
- No hole formation greater than 5mm
- Afterglow should be less than/equal to 2 seconds

On Labelling:

- Procedure A indicated as Code A1
- Procedure B indicated as Code A2

Both EN 14126 and EN 11612 use the ISO 15025 vertical Flammability test. The requirements for EN14116, Index 3 are the same as the requirements for EN 11612.

Secondary FR Workwear garments normally achieve Index 1 - so cannot be worn next to the skin and MUST be worn over Primary FR Workwear.

Key Point

- Primary FR Workwear is tested according to EN 11612 which provides methods for assessing the level of protection against different heat energy types.
- Secondary FR Workwear is certified to EN 14116 using the vertical flammability test ISO 15025, in most cases achieving only the lowest pass criteria. (Index 1)
- ISO 15025 is a simple test to assess tendency to ignite and burn, providing little or no information on:
 - Effectiveness of heat protection.
 - How well the garment performs when worn over primary FR Workwear - the purpose for which it is designed.

EN 14116 / ISO 15025 is not an effective measure of real world performance of Secondary FR Workwear

So how can Secondary FR garments be assessed?

The answer is by testing them in the way they are meant to be used, worn *over* primary FR garments.

EN 11612 Fabric Heat Energy Resistance Tests

Note: any ONE of the heat protection performance tests with a Class 1 result is required

Test Standard	est Code tandard Letter Heat Type Description					
ISO 9151	В	Convective Heat	- Small flame applied to lower surface of horizontal fabric sample - Heat calorimeter records the time until a rise of 24°C on the other side of the fabric	B1: 4.0s to <10s B2: 10.0s to <20.0s B3: 20.0 or more		
Lowest class	is B1, hig	hest class is B3:	the longer time taken for temperature rise the longer a gai	rment will protect		
ISO 6942	- Fabric sample exposed to radiant heat source of 20-40Kw - Heat - Heat calorimeter records the time until a rise of 24			C1: 7.0s to <20.0s C2: 20.0s to <50.0s C3: 50.0s to <95.0s C4: 95.0s or more		
Lowest class	is C1, hig	hest class is C4:	the longer time taken for temperature rise the longer a ga	rment will protect		
ISO 12127-1	F	Contact Heat	- Fabric sample placed over heated cylinder at 250°c - Calorimeter behind fabric measure time to a rise in temperature of 10°c	F1: 5s <10s F2: 10s <15s F3: 15s		
E1 is the low	oct E2 ic	the highest the	langer time taken for temperature rice the langer a garme	nt will protect		

Molten Metal Splash Tests

	behind the test fabric. The greater the mass required, the better the protection.									
ISO 9185	D	Molten Aluminium Splash	- Molten aluminium at 780°c dripped onto fabric sample at 60°c angle	D1: 100g <200g D2: 200g <350g D3: 350g						
ISO 9185	Е	Molten Iron Splash	- Molten iron at 1400°c dripped onto fabric sample at 75°c angle	E1: 60g <120g E2: 120g <200g E3: 200g						
D1/F1 are the	D1/F1 are the lowest D3/F3 are the highest. The fabric will protect against a greater mass of the molten metal.									

What is Thermal Mannequin Testing?

1.2 Thermal Mannequin Testing

How can performance of heat protective garments be measured?

What is Thermal Mannequin Testing?

Secondary FR Workwear

- Standard testing for primary and Secondary FR Workwear provides very limited information about the effectiveness of protection in the real world. (see page 5)
- What testing is available to provide a realistic indication of whether a garment or garment ensemble will protect in the event of a real flash fire?

Thermal Mannequin Testing

- This test is the only method of assessing how well thermal protective garments perform in the real world.
- It is stated as an option in EN 11612 for primary FR workwear.
- It uses a simulated flash fire to assess how much heat energy penetrates through fabric to cause burns.
- It is the only way to assess and compare how effectively secondary FR garments perform when worn over primary FR garments.

How does Thermal Mannequin testing work?

A mannequin is covered with heat sensors, each designed to replicate the rate at which skin absorbs heat energy. Each sensor is attached to a computer which monitors heat energy absorbed. The garment or combination of garments is put on the mannequin. Normal cotton underwear is often used to simulate

The mannequin is subjected to a burn from four burners surrounding it, the burn is at a specific heat calorie level and is normally for 3 or 4 seconds

Data on heat energy absorbed by each sensor is collected, normally for 90 or 120 seconds after the burn. The computer can use this data to calculate, using 'Stoll Curve' analysis, where on the body pain or a burn would have occurred, indicating 1st, 2nd and 3rd degree burns.

What does Thermal Mannequin testing tell you?

Thermal mannequin testing provides:-

- A 'predicted Body Burn' map showing the front and rear of the body colour coded to indicate where pain, 1^{st,} 2nd and 3rd degree burns would have occurred with a 50% probability.
- A total Predicted Body Burn
- Thus it provides a real indication of how well thermal protective garments, or combinations of Primary and Secondary FR garments will protect against heat energy in a real world scenario.

Thermal Mannequin Testing is the only way to assess and compare how Secondary FR Workwear actually performs when worn over primary FR garments - they way they are designed to be worn in the real world.

Pages 7&8 - show the results of thermal mannequin testing of different garment combinations:

Page 7 - Test Bank 1: comparing a standard chemical suit with Pyrolon[™] Secondary FR workwear worn over a primary FR garment.

Page 8 - Test Bank 2: comparing various Secondary FR workwear types worn over a primary FR garment.

Thermal Mannequin Testing

2. 0
Thermal Mannequin
Test Results

TEST BANK 1

Proof that standard disposables cannot be worn over primary FR workwear but Pyrolon $^{\rm TM}$ can!

Test 1: Thermal Mannequin Test on Primary FR Workwear

Test 2: Effect of wearing a standard disposable over Primary FR Workwear

Test 3: Effect of wearing Pyrolon™over Primary FR Workwear

Test 1	Test 2	Test 3
Primary FR garment worn on its own	Standard disposable worn over the same primary FR garment	Pyrolon™ CRFR chemical suit worn over the same primary FR garment
 As a control a primary FR Garment (Nomex IIIA) worn on its own. The result was a predicted body burn of 37%. Only 2nd degree burns were predicted - indicated by the orange areas on the body map. Test 1 Result Predicted Body Burn 37% 37% 2 nd degree burns only	 The same test was conducted with a standard microporous film laminate coverall worn over the Primary FR Garment. The result was a total predicted body burn of 53%. 2nd and 3rd degree burns were indicated. Test 2 Result Predicted Body Burn 53% 53% 2 nd and 3 rd degree burns	
	 Key Point The result of wearing a standard disposable coverall over the Primary FR Garment is an increase in body burn from 37% to 53% - a 43% increase - and the addition of more dangerous 3rd degree burns (in dark red on the body map) This proves a standard chemical suit worn over a primary FR garment will compromise thermal protection 	The results of Test bank 1 clearly prove that standard disposable coveralls cannot be worn over Primary FR Workwear - the result is a serious compromising of thermal protection Test 3 however shows that wearing Pyrolon™ garments over Primary FR Workwear not only does not compromise thermal protection it actually improves it

improves it.

protection

Thermal Mannequin Testing Test Results

3.0
Thermal Mannequin
Test Results

There are TWO variations of Type 5 & 6... disposable FR coveralls available based on different types of fabric

TEST BANK 2

Performance of different types of disposable coveralls

Test 1: Flashspun Polyethylene over Primary FR Workwear

Test 2: Standard SMS disposable over Primary FR Workwear

Test 3: Branded FR treated SMS disposable over primary FR Workwear

Test 4: Lakeland Pyrolon XT over primary FR Workwear

Test 5: Lakeland Pyrolon Plus 2 over primary FR Workwear

01

FR SMS Coveralls

Coveralls made of SMS polymer fabric with a chemical based FR treatment

Specialist FR Coveralls

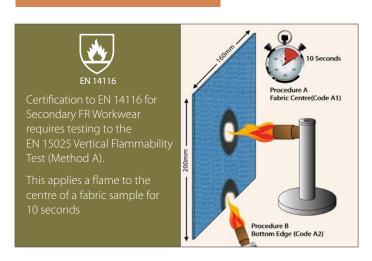
Coveralls made of specialist fabrics specifically engineered for FR Properties such as Pyrolon™

How do these types of coveralls compare with each other and with standard disposable coveralls in Thermal Mannequin Testing?

Test Bank 2 tested various disposable coverall types worn over the same primary FR Garment.

Standard Non-FR D	Disposable Coveralls	FR-treated SMS Secondary FR Workwear	Specialist engineered Secondar FR Workwear				
Test 1	Test 2	Test 3	Test 4	Test 5			
Flashspun Polyethylene over Primary FR Workwear	Standard SMS disposable over Primary FR Workwear	Branded FR treated SMS disposable over primary FR Workwear	Pyrolon™ XT over primary FR Workwear	Pyrolon™ Plus 2 over primary FR Workwear			
Predicted Body Burn 23.9% 3rd degree burns		Predicted Body Burn 19.6% 3" degree burns	Predicted Body Burn 8.2% NO 3"d degree burns	Predicted Body Burn 7.496 NO 3** degree burns			
and the FR treated SMS cov	e standard Non-FR SMS coverall and	 Both the Pyrolon™ special coveralls show predicted of that shown by the FR S Neither Pyrolon™ garmen burns. 	body burn <i>less than half</i> MS coverall.				
non-FR SMS workwear. Those paying a premium	y FR workwear shows little differ for FR treated SMS coveralls over ence in real world performance	 In thermal mannequin t secondary FR workweat show a dramatic reduct burn. 	are the only ones that				

Thermal Mannequin Testing proves that Pyrolon™ is the only Secondary FR Workwear you can trust to work safely in the real world.



Vertical Flammability Testing

4. 0 Vertical Flammabilty Test Results

What are the Test Requirements of EN 14116?

How do FR treated SMS garments perform compared with Pyrolon™? The effect of changes introduced in the 2015 version of EN 14116.

The Standard requires the following MINIMUM performance:

- No burning shall reach any outer edge of the sample
- No flaming or molten debris
- After-flame less than or equal to 2 seconds

2015 Version of EN 14116

The 2015 revised version of EN 14116 introduced an important change. As well as conducting the test on the outer edge, it requires testing on the zip assembly with the following requirements:

- Same burn requirements as fabric: no dripping molten debris, no burning or melting shall reach the outer edge, after-flame less than or equal to 2 seconds.
- The zip must function after the test.

WHY IS THIS IMPORTANT? In the event of a flash fire removing the coverall quickly might be important. A non-functioning zip may prevent this!

How do different types and brands of disposable coveralls certified to EN 14116 perform in independent testing to these requirements?

Lakeland purchased sample garments in the market and sent them to a Notified Body for testing. Copies of test reports are available on request.

		Lake	land F	Pyrolo	on™ Se	econd	ary FF	R Wor	kwear	Garm	nents	
	Pyro	Pyrolon™ Plus 2			rolon™	XT	Pyro	rolon™ CRFR		Pyrolon™ CE		BFR
Requirement	FABRIC	SEAM	11R	FABRIC	SEAM	11P	FABRIC	SEAM	11P	FABRIC	SEAM	11º
Flaming to edge of sample (PASS requires 'no')	NO	NO	-	NO	NO	-	NO	NO	-	NO	NO	-
Any occurence of holes? (Index 1 allows holes)	YES	YES	NO	YES	YES	NO	YES	YES	NO	YES	YES	NO
Any flaming / molten debris? (PASS requires 'no')	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Does after flame reach edge of sample? (PASS requires 'no')	NO	NO	n/a	NO	NO	n/a	NO	NO	n/a	NO	NO	n/a
Afterflame time/s (PASS requires <2s)	0	0	0	0	0	0	0	0	0	0	0	0
Afterglow time/s (PASS requires <2s)	0	0	0	0	0	0	0	0	0	0	0	0
Zip functions after test? (PASS requires 'yes')	-	-	YES	-	-	YES	-	-	YES	-	-	YES
Overall Result (Index)	PAS	PASS (Index 1)		PASS (Index 1)			PASS (Index 1)			PASS (Index 1)		

Lakeland Pyrolon™ Secondary FR Workwear is **fully** certified to the LATEST 2015 version of EN 14116 including fabrics, seams and zips.

In all the tests, every Pyrolon[™] garment meets **all** requirements of the standard - including the tests on the zip.

FI	FR SMS Secondary FR Workwear Garments												
	FR SMS overall			FR SMS		FR SMS Coverall C							
FABRIC	SEAM	TIP.	FABRIC	SEAM	ZIP	FABRIC	SEAM	118					
NO	n/a	-	NO	n/a	-	ТВА	n/a	-					
YES	n/a	YES	YES	n/a	YES	ТВА	n/a	YES					
NO	n/a	YES	YES	n/a	YES	ТВА	n/a	YES					
NO	n/a	n/a	NO	n/a	n/a	TBA	n/a	n/a					
0	n/a	31	0	n/a	8	TBA	n/a	63					
0	n/a	0	0	n/a	0	TBA	n/a	0					
NO			-	-	NO	-	-	NO					
	FAIL			FAIL		FAIL							

All FR SMS garments tested failed to meet the requirements of the latest version of EN 14116. Zip performance especially fails the test. Certification is achieved by **excluding** the requirements added in the 2015 Standard. Note: the afterflame time for the zips on these garments: one continued to burn for 63 seconds after the flame was removed!

Analysis of the certification of these garments shows that whilst certified these garments:-

- only meet the old version of the standard, and/or
- meet the requirements of the 2015 standard *except for* specific clauses such as the zip requirments clause.

Anti-Static Properties

5.0 Anti-static Properties

What is the anti-static standard EN 1149 and how does it work?

How do Pyrolon™ garments differ from any other disposable garment?

What are the result of static dissipative tests on Pyrolon™ garments?

There are two main reasons why garmentsmay need to be 'anti-static'

Garments are used in areas with explosive atmospheres of gases, vapours or dusts.

A build up of a static charge could result in a spark causing an explosion.

Garments are used in areas with sensitive electronic equipment or product.

A build up of a static charge could result in a spark which could damage the equipment or product.

The purpose of certification to EN 1149 is to ensure that a garment's **Surface Resistance** (the tendency to resist dissipation of a static charge across its surface) is sufficiently LOW to allow dissipation of a charge so that it can go to earth without generating an incendiary or damaging spark.

The Anti-Static Standard for protective clothing is EN 1149. EN 1149 consists of 5 parts.

Part 5 contains garment requirements.

Parts 1 to 4 are **test methods** to measure dissipative properties

Garments are **certified** to EN 1149 Part 5 and **tested** to one of parts 1 to 4.

Part 1: Surface Resistance (ie. resistance across the fabric surface)

Part 2: Vertical Resistance (ie. resistance through the fabric) **Part 3:** Charge Decay (ie. from a single point on the fabric)

Part 4: Intended as a whole garment tests (does not yet exist)

Part 5 requires that protective clothing must be tested to *either* Part 1 *or* Part 3. Most disposable garments are tested according to Part 1: Surface Resistance. Part 5 defines minimum part 1 test requirements as Surface Resistance must be less than or equal to $2.5 \times 10^{\circ}$ ohms.

How are anti-static properties achieved on disposable coveralls?

Most standard disposable coveralls are made from synthetic thermoplastic poylmers (usually polypropylene or polyethylene). Polymers have a high electrical resistance and and will often generate static charges resulting in sparks.

To reduce the surface resistance manufacturers apply a chemical treatment to the fabric surface. This absorbs moisture from the atmosphere to create a thin film on its surface. Because moisture is conductive this increases surface conductivity (or reduces surface resistance).

Pyrolon™ garments are **not** based on synthetic polymers but on fibre derived from viscose (wood pulp). This has a naturally high moisture content and therefore has a naturally and intrinsic low surface resistance.

Because Pyrolon™ are intrinsically anti-static and require no special or topical treatment, anti-static properties are superior, permanent and and unlike the treatment on standard disposables will last the life of a garment.

Because anti-static properties of standard disposable coveralls relay on a topical treatment they:-

• are generally weak • are variable and uncertain • will rub off or fade over time • may not last the life of the garment

Test Results EN 1149 requires a surface resistance of less that 2.5 x 10° Ohms when tested to EN 1149-1.

Pyrolon™: EN 1149-1 Surface Resistance										
	Inside	Outside								
Pyrolon™ Plus 2	52 x 10 ⁶	41 x 10 ⁶								
Pyrolon™XT	1.23 x 10 ⁹	7.83 x 10 ⁷								
Pyrolon™CRFR	60 x 10 ⁴	9.4 x 10 ⁸								
Note: Pyrolon CBFR is tested to EN 1149-3										

Even if FR properties are not required, in applications where anti-static properties are important, such as working in explosive atmospheres. Pyrolon™ are a safer alternative.

Key Point

Anti-static properties of Pyrolon™ coveralls are superior to those of standard disposable coveralls:-

- they do not rely on a topical treatment like other disposable coveralls and chemical suits.
- because it is not a topical treatment properties will last the life of the garment they will not fade or rub off.
- the results show that the surface resistance of Pyrolon™ coveralls are lower than standard coveralls.

Oil & Gas / Petrochemical Industry

6. 0 Oil & Gas/Petrochemical

Why is Secondary FR Workwear vital in this industry?

What are the common chemical hazards and how do Pyrolon $^{\text{TM}}$ garments perform?

To what chemical protection standards are Pyrolon™ garments certified to?

- Many areas and applications need **both** Primary FR protection **and** chemical protection at the same time - standard chemical protection **cannot** be worn over primary FR workwear (see pages 6 & 7)
- Many chemicals are flammable and may generate flammable vapours so garments that may burn or may generate static sparks could present a hazard.

- Taking into account upstream extraction and downstream cracking, processing and distribution of fuels and chemicals derived from hydrocarbons, there are thousands of chemicals in use - either as part of processing or finished products.
- However, a smaller number of essential chemicals are in common use. The table below provides a list with chemical permeation resistance for each Pyrolon™ product.

Users in industries related to oil & gas and petrochemical should select garments that provide the chemical protection needed without risking compromising thermal protection and that feature effective and permanent anti-static properties.

Many chemicals are flammable and may generate flammable vapours so garments that may burn or may generate static sparks could present a hazard.

		Common Ch	iemica	iis Ha									
results shown ii	n minutes				Pyrolon™ CRFR			Pyrolon™CBFR			Pyrolon™TPCR		
Chemical	CAS No.	Basic Hazard Data	Toxicity	State	NBT ASTM F739**	NBT EN 6529**	VP ASTM F903***	NBT ASTM F739**	NBT EN 6529**	VP ASTM F903***	NBT ASTM F739**	NBT EN 6529**	VP ASTM F903***
Acetic Acid	64-19-7	Flammable liquid and vapour. Causes severe skin burns and eye damage.	Acutely toxic	Liquid	40	45	N/A	N/A	N/A	N/A	40	45	N/A
Benzene	71-43-2	Flammable / maybe fatal if swallowed or inhaled. Skin & eye irritant. May cause genetic defects, cancers or damage to organs.	Acutely toxic	Liquid	lmm.	lmm.	>60	N/A	N/A	N/A	40	45	N/A
Ethylene Glycol	107-21-1	Harmful if swallowed.	Toxicity	Liquid	NA	NA	NA	>480	>480	NA	NA	NA	NA
Formic Acid	64-18-6	Causes severe skin burns and eye damage.	Acutley toxic	Liquid	NA	NA	NA	120	120	NA	NA	NA	NA
Hydrochloric Acid (36%)	7647- 01-0	Gas under pressure - may explode. Causes severe skin burns and eye damage. Toxic if inhaled. Vapour risk (gas tight suit may be required)	Acutely toxic	Liquid	NA	NA	>60	>480	>480	NA	NA	NA	>60
Hydroflouric Acid	7664- 39-3	Fatal if swallowed or in contact with skin. Causes severe skin burns and eye damage. Fatal if inhaled.	Acutely toxic	Liquid	NA	NA	NA	>480	>480	NA	NA	NA	NA
Methanol	67-56-1	Highly flammable liquid & vapour. Toxic if swallowed, inhaled or in contact with skin. Causes organ damage.	Acutely toxic	Liquid	NA	NA	NA	25	33	NA	NA	NA	NA
Phenol (40%)	108-95-2	Toxic if swallowed, inhaled or in contact with skin. Causes severe skin burns and eye damage. May cause genetic defects and damage to organs.	Acutely toxic	Liquid	NA	NA	NA	NA	NA	>60	NA	NA	>60
Potassium Hydroxide (99%)	1310- 58-3	Harmful if swallowed. Causes severe skin burns and eye damage.	Acutely toxic	Solid	NA	NA	NA	>480	>480	NA	NA	NA	NA
Sodium Hydroxide (50%)	1310- 73-2	Causes severe skin burns and eye damage.	Acutely toxic	Liquid	NA	NA	NA	>480	>480	>60	NA	NA	NA
lmm. = Immedia	te NBT =	Normalised Breakthrough Time, VP = Visible Pe	enetration										

03		Pyrolon™ Certification ar	nd Heat Re	esistance I	Performar	ice	
EN Standard	CEType	Description	Pyrolon™ Plus 2	Pyrolon™ XT	Pyrolon™ CRFR & Cool Suit	Pyrolon™ CBFR	Pyrolon™ TPCR
Chemical Haz					Coor Suit		
EN 13982	Type 5	Hazardous dusts	•	•	•	N/A	N/A
EN 13605	Type 6	Light / aerosol liquid spray	•	•	•	N/A	N/A
EN14605	Type 4	Liquid spray	No	No	•	•	•
EN 14605	Type 3	Liquid jet spray	No	No	No	•	•
EN 1073-2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Radioactive contaminated dust protection	•	•	•	N/A	N/A
EN 1149-5		Anti-Static (surface resistance/charge decay)	•	•	•	•	•
Flame & Heat	Hazards	,					
EN 14116 Flames &	Index 1	no flame to reach outer edge of sample / no dripping / afterglow <2sec	•	•	•		•
Heat -	Index 2	As above plus no hole formation >5mm					
Flammability	Index 3	As above with afterflame <2sec				•	
EN 11612		Flames & heat protection				● C1	•
Heat Transfer	Classes						
	Code B	Convective heat	N/A	N/A	N/A	N/A	B1
	Code C	Radiant heat	N/A	N/A	N/A	N/A	C1
	Code D	Molten aluminium	N/A	N/A	N/A	N/A	D1
	Code E	Molten iron	N/A	N/A	N/A	N/A	E1
	Code F	Contact heat	N/A	N/A	N/A	N/A	F1
EN 61482-1-2	Arc Flash	Box method	N/A	N/A	N/A	N/A	•
EN 61482-1-1	Arc Flash	Fabric ATPV	N/A	N/A	N/A	N/A	21.9 Cal/ HRC 2
EN 11611		Welding and allied Processes	N/A	N/A	N/A	N/A	•

NOTES

- Pyrolon™ CBFR achieves Index 3 in the vertical flammability test which is equivalent to the requirements for certification in EN 11612 - the standard for PRIMARY FR workwear. It is therefor certified as such and achieves Class 1 in the Radiant Heat transfer test.
- Pyrolon™TPCR is a multi-hazard coverall providing chemical, flame and heat and arc protection. It achieves Class 1 in all the heat. (product sheet available separately)
- CE Certificates and Declarations of Conformity can be downloaded at www.lakeland.com/europe

Use the QR Code to view a video showing burn comparisons for SMS, FR SMS and Pyrolon™ XT fabrics.

PyrolonTM Plus 2

Flame retardant Type 5 & 6 breathable coverall

- Pyrolon garments meet the requirements of EN 14116 (Index 1) for garment for protection against flames and heat.
- Approved to the latest 2015 version of EN 14116 which requires vertical flammability testing on the zip front fastening as well as the fabric – and requires that the zip functions after the test.
- Fabric will not ignite, chars at low temperature and unlike standard disposables does not continue burning after the ignition source is withdrawn.
- Can safely be used over thermal protective garments without compromising thermal protection.
- Note that $\mathsf{Pyrolon}^\mathsf{TM}\operatorname{Plus} 2$ fabric will not ignite but is designed to wear OVER thermal protective garments and will not provide heat protection
- Intrinsic anti-static properties with very low surface resistance; anti-static does not wear off in use like standard disposables.
- Lakeland "Super-B" ergonomic styling unique combination of three design elements to optimise fit, durability and freedom of movement.
- Three piece hood for rounder head shape and greater comfort.
- Inset sleeves torso shaped to body to mazimise freedom of movement and negate the need for thumbloops.
- Two piece crotch gusset enhances freedom of movement and reduced crotch

Physical Properties										
		Pyrolon™ Plus 2	Pyrolon™ XT	FR SMS Brand A	FR SMS Brand B					
Property	EN Std	CE Class	CE Class	CE Class	CE Class					
Abrasion Resistance	EN 530	3	2	2	1					
Flex Cracking	ISO 7854	6	6	6	5					
Trapezoidal Tear	ISO 9073	2	4/3	2	1					
Tensile Strength	EN 13934	2/1	3/2	1	1					
Puncture Resistance	EN 863	2	2	1	1					
Burst Strength	EN 13938	3	2	n/a	n/a					
Seam Strength	EN 13935-2	2	3	3	2					

Chemical Repellency and Penetration EN 6530											
		rrolon™ Pyrolon™ XT FR SMS Plus 2 Brand A			FR SMS Brand B						
Chemical	R	Р	R	Р	R	Р	R	Р			
Sulphuric Acid 30% CAS No. 67-64-1	2	3	3	3	3	3	3	3			
Sodium Hydroxide CAS No. 1310-73-2	3	3	3	2	3	3	3	3			
O-Xylene CAS No. 75-15-0	NT	NT	NT	NT	n/a	n/a	n/a	n/a			
Butanol CAS No. 75-09-2	NT	NT	NT	NT	n/a	n/a	n/a	n/a			

Pyrolon® Plus 2 Styles

Style code 428 Coverall with elastic hood, cuffs, waist &

Sizes: S - XXXL

Style code L428 Coverall with elasticated hood, cuffs with thumb loops, waist & ankles

Sizes: S - XXXL

Style code 414 Coverall with elasticated hood, cuffs, waist and attached socks.

Sizes: S - XXXL

Style code L414 Coverall with elasticated hood, cuffs with thumb loops, waist, ankles and attached socks.

Available in: White

Columns 3 and 4 contain comparative data for two commonly available FR SMS-based garment brands. The tests show that in most cases the Lakeland Pyrolon™ options feature superior properties.

However, whereas thermal mannequin testing to show predicted body burn when worn over a thermal protecting EN 11612 garment has been conducted on Pyrolon™, no such testing is available from the manufacturers of Brands A and B. Lakeland has conducted such testing for comparison purposes. The results are shown below:

Thermal Mannequin Testing							
	FSPE	Standard SMS	FR SMS	Pyrolon™ Plus 2	Pyrolon™ XT		
Total % predicted body burn	23.9%	20.5%	19.6%	7.4%	8.2%		
2nd degree burns	15.6%	12.8%	14.7%	7.4%	8.2%		
3rd degree burns	8.3%	7.7%	4.9%	0%	0%		

- The predicted body burn performance shows little difference between FSPE, Standard SMS and FR SMS with total body burn being close to 20% and including 3rd degree body burns of 5 to 8%.
 The total predicted body burn for Pyrolon™ products is much lower at 7 to 8% with no 3rd degree burns apparent.
- This proves both that Pyrolon[™] products show a superior FR performance when worn over EN 11612 protective
 garments and that the additional cost of FR SMS garments over Standard SMS garments results in very little
 improvement in FR performance.

Pyrolon[™] XT

Flame retardant Type 5 & 6 breathable coverall

- Pyrolon[™] garments meet the requirements of EN 14116 (Index 1) for garments for protection against flames and heat.
- Includes laminated rip-stop scrim which improves strength and
- Fabric will not ignite, chars at low temperature and unlike standard disposables does not continue burning after the ignition source is
- Can safely be used over thermal protective garments without compromising thermal protection.
- Note that Pyrolon[™] XT fabric will not ignite but is designed to wear OVER thermal protective garments and will not provide heat protection if worn
- Intrinsic anti-static properties with very low surface resistance; anti-static does not wear off in use like standard disposables.
- Lakeland "Super-B" ergonomic styling unique combination of three design elements to optimise fit, durability and freedom of movement.
- Three piece hood for rounder head shape and greater comfort.
- Inset sleeves torso shaped to body to mazimise freedom of movement and negate the need for thumbloops.
- Two piece crotch gusset enhances freedom of movement and reduced crotch splitting.

Physical Properties						
		Pyrolon™ Plus 2	Pyrolon™ XT	FR SMS Brand A	FR SMS Brand B	
Property	EN Std	CE Class	CE Class	CE Class	CE Class	
Abrasion Resistance	EN 530	3	2	2	1	
Flex Cracking	ISO 7854	6	6	6	5	
Trapezoidal Tear	ISO 9073	2	4/3	2	1	
Tensile Strength	EN 13934	2/1	3/2	1	1	
Puncture Resistance	EN 863	2	2	1	1	
Burst Strength	EN 13938	3	2	n/a	n/a	
Seam Strength	EN 13935-2	2	3	3	2	

Chemical Repellency and Penetration EN 6530								
	Pyrolon™ Pyrolon™ XT		FR SMS Brand A		FR SMS Brand B			
Chemical	R	Р	R	Р	R	Р	R	Р
Sulphuric Acid 30% CAS No. 67-64-1	2	3	3	3	3	3	3	3
Sodium Hydroxide CAS No. 1310-73-2	3	3	3	2	3	3	3	3
O-Xylene CAS No. 75-15-0	NT	NT	NT	NT	n/a	n/a	n/a	n/a
Butanol CAS No. 75-09-2	NT	NT	NT	NT	n/a	n/a	n/a	n/a

Pyrolon™ XT Styles

hood, cuffs, waist &

Lab coat with two hip pockets. 4 stud fastening.

Size: M - XL

cket with elasticated

Style code 016

Sizes: S - XXXL

Sizes: S - XXXL

Style code 019

Size: M - XL

Style code 022NS

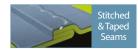
Size: One size Size: One size

Not all styles are available from European stock in this fabric. Please contact our sales office for information on stock items

Note:-

Columns 3 and 4 contain comparative data for two commonly available FR SMS-based garment brands. The tests show that in most cases the Lakeland Pyrolon™ options feature superior properties.

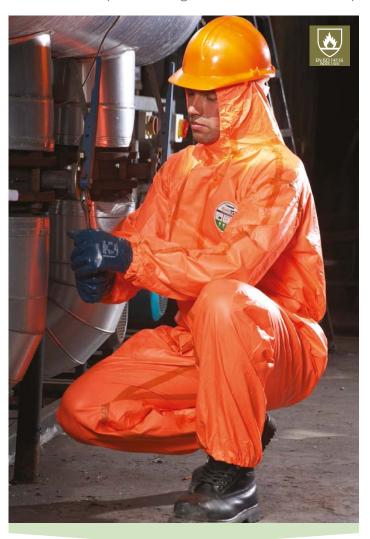
However, whereas thermal mannequin testing to show predicted body burn when worn over a thermal protecting EN 11612 garment has been conducted on Pyrolon $^{\text{IM}}$, no such testing is available from the manufacturers of Brands A and B. Lakeland has conducted such testing for comparison purposes. The results are shown below


Thermal Mannequin Testing							
	FSPE	Standard SMS	FR SMS	Pyrolon™ Plus 2	Pyrolon™ XT		
Total % predicted body burn	23.9%	20.5%	19.6%	7.4%	8.2%		
2nd degree burns	15.6%	12.8%	14.7%	7.4%	8.2%		
3rd degree burns	8.3%	7.7%	4.9%	0%	0%		

- 1. The predicted body burn performance shows little difference between FSPE, Standard SMS and FR SMS with total body
- burn being close to 20% and including 3rd degree body burns of 5 to 8%.

 The total predicted body burn for Pyrolon™ products is much lower at 7 to 8% with no 3rd degree burns apparent.
- This proves both that Pyrolon™ products show a superior FR performance when worn over EN 11612 protective garm and that the additional cost of FR SMS garments over Standard SMS garments results in very little improvement in FR

Pyrolon™ CRFR



Lakeland Pyrolon™ CRFR coveralls provide a unique combination of both chemical protection to Type 3 & 4 AND meeting the requirements of flame resistance standard EN 14116 - Index 1. Pyrolon™ garments use fabric that does not burn and unlike standard Type 3 & 4 chemical protective coveralls can be worn OVER thermal protective garments WITHOUT compromising thermal protection.

- · Combines Flame retardency to EN 14116 (Index 1) with Type 3 & 4 chemical protection.
- Approved to the latest 2015 version of EN 14116 which requires vertical flammability testing on the zip front fastening as well as the fabric – and requires that the zip functions after the test.
- Primarily designed to be worn over Thermal Protective Garments (TPG's - garments certified to EN 11612) without compromising thermal protection - as standard chemical suits will do.
- Outer FR PVC barrier film laminated to a proprietary nonwoven substrate of viscose rayon.
- Fabric will not ignite, burn or drip molten polymer chars at a temperature lower than its ignition point.
- Stitched and taped seams.
- Exceptionally soft and flexible fabric for superior comfort softer and more comfortable than most chemical suits.
- Coverall with elasticated hood, cuffs, waist and ankles. Double zip and storm flap front fastening.
- Range of other styles and accessories available.
- Lakeland 'Super-B' styling features 3-piece hood, 2-piece crotch gusset and inset sleeves. Ergonomically styled for superior freedom of movement, comfort and durability

Physical Properties						
Property	EN Standard	Result	CE Class			
Abrasion Resistance	EN 530	>2000 cycles	6			
Flex Cracking	ISO 7854	>40,000 cycles	5			
Trapezoidal Tear md/cd	ISO 9073	48 / 34.3 N	2			
Tensile Strength	EN 13934	168 / 110N	3			
Puncture Resistance	EN 863	19.2N	2			
Burst Strength	EN 13938	111.8 kPa	2			
Seam Strength	EN 13935-2	186.80	4			

Permeation Test Data *

Liquid chemicals from EN 6529 Annex A. For a full list of chemicals tested see Permeation Data Tables or Chemical Search at www.lakeland.com/europe. Tested at saturation unless stated.

Chemical	CAS No.	Result / CE Class
Acetone	67-64-1	NT
Acetonitrile	70-05-8	NT
Carbon Disulphide	75-15-0	NT
Dichloromethane	75-09-2	NT
Diethylamine	209-89-7	NT
Ethyl Acetate	141-78-6	NT
Hydrofluoric Acid	7664-39-3	1
n-Hexane	110-54-3	NT
Methanol	67-56-1	>480 mins / 6
Sodium Hydroxide (30%)	1310-73-2	>480 mins / 6
Sulphuric Acid (96%)	7664-93-9	1
Tetrahydrafurane	109-99-9	NT
Toluene	95-47-6	NT

- * NB = normalised breakthrough. This is the time taken for the PERMEATION RATE to reach 1.0 μ g/minute/ cm² in controlled laboratory conditions at 23°c. It is NOT the point at which breakthrough first occurs. For safe use times see Selection Guide and PermaSURE®.
- Because the primary concern for Pyrolon $^{\text{IM}}$ CRFR is the COMBINATION of chemical barrier and FR properties, its permeation barrier and testing is limited. However, more extensive penetration testing against a range of chemicals (according to test ASTM F903) is aailable on request.

Pyrolon™ CRFR Styles

Style code 428 Coverall with ela Coverall with elasticated hood, cuffs, waist & ankles Size: S - XXXL

Size: M - XL

Lab coat with 2 hip pockets, 4 stud fastening

Style code 514 with elasticated Size: S - XXXL

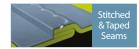
Style code 016 Trousers with elasticated Size: S - XXXI

Style code 019 Rear entry gown with elasticated cuffs Size: M - XI

Style code 022NS Overshoes with anti-slip soles

Bespoke styles available subject to MOQ's.

Available in: Orange


Page 14

Pyrolon™ CBFR

High chemical barrier Type 3 & 4 chemical suit combined with FR properties to EN 14116 – Index 3.

Pyrolon™ CBFR Styles

Available in: Navy blue

- · Coverall with high level chemical barrier for protection against a wide range of hazardous chemicals.
- Certified as primary FR workwear to EN 11612 (A1/C1) will provide protection against heat and flame without wearing an FR garment underneath.
- Approved to the latest 2015 version of EN 14116 which requires vertical flammability testing on the zip front fastening as well as the fabric - and requires that the zip functions after the test.
- Meets the requirements of FR standard EN 14116 to Index 3 (As test according to EN 15025 - not index 1 as other FR disposables. Note that Index 3 is the same requirements as detailed for FR garments in EN 11612 for thermal protective garments.
- Single zip and double storm flap front fastening with hook & loop seals enabling re-use where appropriate (chemical suits should ONLY be re-used if uncontaminated and undamaged. Decision on re-use is the users' responsibility).
- Coverall with hood, elasticated cuffs, waist and ankles. Version with attached feet available.
- Lakeland "Super-B style with 3-piece hood, crotch gusset and inset sleeves for superior freedom of movement and durability.
- Double layer, cushioned kneepads for comfort and durability.

Physical Properties					
Property	EN Standard	CE Class			
Abrasion Resistance	EN 530	6			
Flex Cracking	ISO 7854	3			
Trapezoidal Tear	ISO 9073	3			
Tensile Strength	EN 13934	3			
Puncture Resistance	EN 863	2			
Anti-static (charge decay) *	EN 1149-3	SF=0.1/HDT=0.24s)			
Seam Strength	EN 13935-2	4			
VALUE OF THE PROPERTY OF THE P					

Permeation Test Data *

Liquid chemicals from EN 6529 Annex A. For a full list of chemicals tested see Permeation Data Tables or Chemical Search at www.lakeland.com/europe.Tested at saturation unless stated.

Chemical	CAS No.	Result / CE Class
Acetone	67-64-1	NT
Acetonitrile	70-05-8	NT
Carbon Disulphide	75-15-0	NT
Dichloromethane	75-09-2	NT
Diethylamine	209-89-7	NT
Ethyl Acetate	141-78-6	NT
Hydrofluoric Acid	7664-39-3	1
n-Hexane	110-54-3	NT
Methanol	67-56-1	>480 mins / 6
Sodium Hydroxide (30%)	1310-73-2	>480 mins / 6
Sulphuric Acid (96%)	7664-93-9	1
Tetrahydrafurane	109-99-9	NT
Toluene	95-47-6	NT

^{*} NB = normalised breakthrough. This is the time taken for the PERMEATION RATE to reach 1.0 μ g/minute/ cm² in controlled laboratory conditions at 23°c. It is NOT the point at which breakthrough first occurs.

For safe use times see Selection Guide and PermaSURE®.

Because the primary concern for Pyrolon™ CBFR is the COMBINATION of chemical barrier and FR properties, its permeation barrier and testing is limited. However, more extensive penetration testing against a range of

chemicals (according to test ASTM F903) is aailable on request.

The Lakeland range of protective clothing provides a wide and expanding range of options for protection against the hazards of chemicals, flames and heat

This booklet provides users with a detailed guide to the importance, assessment and selection of Secondary FR Workwear.

These garments are used to provide chemical protection when worn OVER primary FR workwear without compromising thermal protection - a common requirement in the oil, gas & petrochemical industries

Standard chemical suits can not be worn in these dual-hazard circumstances as they are invariably constructed using flammable polymers, which will ignite and burn and thereby destroy the thermal protective properties provided by the primary FR workwear.

This guide will assist in ensuring the secondary FR workwear you select is effective in the real world and in ensuring you are not paying a premium for secondary FR disposable coveralls that perform little differently than standard disposable coveralls.

Nick Stevenson

Country Manager Australia/New Zealand/Oceania Mobile: +61 (0) 437 075 686 E: nastevenson@lakeland.com W: www.lakeland.com

Lakeland Asia Pacific

Unit 503, Building B, Sinolight Plaza, No 4 Wangjing Qlyang Road, Chaoyang District, Beijing 100102, P.R. China

T: +86 10 643 79226 F: +86 10 643 79918 W: www.lakeland.com E: sales-ap@lakeland.com

Sign up to the Lakeland Blog for regular and informative articles on Protective Clothing.

https://blog.lakeland.com/australia

